
Sharding with postgres_fdw

PGConf.EU 2013
Dublin, Ireland

Stephen Frost
sfrost@snowman.net

Resonate, Inc. • Digital Media • PostgreSQL • Hadoop • techjobs@resonateinsights.com • http://www.resonateinsights.com

mailto:techjobs@resonateinsights.com
http://www.resonateinsights.com

Stephen Frost
•PostgreSQL

•Major Contributor, Committer
•Implemented Roles in 8.3
•Column-Level Privileges in 8.4
•Contributions to PL/pgSQL, PostGIS

•Resonate, Inc.
•Principal Database Engineer
•Online Digital Media Company
•We're Hiring! - techjobs@resonateinsights.com

mailto:techjobs@resonateinsights.com

Do you read...
•planet.postgresql.org

What is an FDW?
•First, SQL/MED

•SQL/ Management of External Data
•Standard to allow integration with external data
•Foreign data can be nearly anything:

•SQL Databases, CSV Files, Text Files,
•NoSQL Databases, Cacheing systems, etc..

•Defines the notion of a 'FOREIGN TABLE'
•Foreign tables are "views" to external data
•No data is stored in the DB

What is an FDW? (part 2)
•FDWs are the back-end piece to support SQL/MED
•PostgreSQL provides a generic FDW API
•An FDW is a PG EXTENSION implementing the API

•PG Extensions already exist for:
•RDMS's: Oracle, MySQL, ODBC, JDBC
•NoSQL's: CouchDB, Mongo, Redis
•Files: CSV, Text, even JSON
•"Other": Twitter, HTTP

•Our focus will be on (ab)using postgres_fdw

Basics of FDW connections
•Connecting to another actual RDBMS is complicated

•CREATE FOREIGN SERVER
•CREATE USER MAPPING
•CREATE FOREIGN TABLE

•'SERVER' provides a name and options to connect
•'USER' maps the local user to the remote user
•'TABLE' defines:

•A local TABLE object, with columns, etc
•A remote TABLE (through a FOREIGN SERVER)

•Connecting with a file FDW is simpler (no user map)

Using postgres_fdw
•CREATE EXTENSION postgres_fdw;

CREATE FOREIGN SERVER shard01
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'shard01', dbname 'mydb', ...)

•All libpq options accepted except user/pw
•User/PW is specified in user mappings
•Cost options (fdw_startup_cost, fdw_tuple_cost)

Createing User Mappings

CREATE USER MAPPING FOR myrole
SERVER shard01
OPTIONS (user 'myrole', password 'abc123')

•Only takes user and password options
•User mappings are tied to servers
•User must exist on client and server
•Must use a password for non-superuser maps

Creating Foreign Tables

CREATE FOREIGN TABLE mytable_shard01 (

a int OPTIONS (column_name 'b'),
b int OPTIONS (column_name 'a'), ...

SERVER shard01
OPTIONS (table_name 'mytable');

•Can pick remote schema, remote table, and
remote column

•These don't have to match the local system
•Very important for sharding

Remote Query Execution
•Each backend manages its own remote connections
•When a foreign table is queried:

•PG opens a connection to the remote server
•Starts a transaction on the remote server
•A cursor is created for the query
•WHERE clauses are pushed to remote server
•Data is pulled through the remote cursor when

rows are requested during query execution

More on Query Execution
•The remote transaction ends when the local

transaction ends
•Rolls back or commits based on local transaction
•Rows inserted are not visible on remote until the

local transaction completes
•Be careful of 'idle in transaction' connections..

•Connections are kept after the foreign query
•Re-used for later requests to the same server
•No explicit limit on number of connections
•Each connection uses up memory, of course.

Query costing with FDWs
•Approach to costing can be changed
•Options can be set at server or table level
•fdw_startup_cost and fdw_tuple_cost
•use_remote_estimate - false (default)

•Looks up statistics for the table locally
•Statistics updated with ANALYZE

•use_remote_estimate - true
•Queries the remote server to determine cost info
•Uses EXPLAIN on remote side

•ANALYZE your tables!

Sharding
•What is sharding?

•Horizontal partitioning across servers
•Break up large tables based on a key/range
•Replicate small / common data across nodes

•Why sharding?
•Allows (more) parallelization of work
•Scales beyond a single server

•Challenges
•Data consistency
•Difficult to query aganist

Dealing with 32 shards
•Why 32?

•Pre-sharding
•Only 8 physical servers
•Four clusters per node
•Too many to manage manually

•Script everything
•Building the clusters
•User/role creation
•Table creation, etc, etc..

•Use a CM System (Puppet, Chef, etc.)

Sharding suggestions
•Still partition on shards

•Smaller tables, smaller indexes
•Use inheiritance and CHECK constraints
•Foreign tables can use parent tables

•Break up sequence spaces
•Define a range for each shard
•Put constraints to ensure correct sequence used
•Consider one global sequence approach

FDW Challenges
•Not parallelized!

•Queries against foreign tables are done serially
•Transactions commit with the head node

•What is pushed down and what isn't?
•Conditionals
•Only built-in data types, operators, functions
•Joins aren't (yet...)

•Not able to call remote functions directly
•Foreign Tables are one-to-one
•Inserts go to all columns (can't have defaults..)

Parallelizing
•Need an independent "job starting" process

•cron
•pgAgent
•Daemon w/ LISTEN/NOTIFY

•Use triggers on remote tables to NOTIFY
•View / Manage jobs through the head node
•Custom background worker...?

Working through FDWs
•Use lots of views

•Script building them
•UNION ALL is your friend
•Add constants/conditionals to view's query
•Use DO-INSTEAD rules for updates
•Put them on foreign system too for joins, etc

•Get friendly with triggers
•Use them to run remote procedures
•Remember that everything is serial!

•Bottlenecks, network latency can be a factor

View Example
CREATE FOREIGN TABLE workflow.jobs_shard1
 (workflow_name text, name text, state text)
 SERVER shard1 OPTIONS (schema_name 'workflow', table_name 'jobs');
...

CREATE FOREIGN TABLE workflow.workflow_shard1
 (name text, state text)
 SERVER shard1 OPTIONS (schema_name 'workflow', table_name 'workflow');
...

CREATE VIEW workflow.workflow AS
SELECT 'shard1'::text AS shard, * FROM workflow_shard.workflow_shard1 UNION ALL
SELECT 'shard2'::text AS shard, * FROM workflow_shard.workflow_shard2 UNION ALL
SELECT 'shard3'::text AS shard, * FROM workflow_shard.workflow_shard3 ...

CREATE VIEW workflow.jobs AS
SELECT 'shard1'::text AS shard, * FROM workflow_shard.jobs_shard1 UNION ALL
SELECT 'shard2'::text AS shard, * FROM workflow_shard.jobs_shard2 UNION ALL
SELECT 'shard3'::text AS shard, * FROM workflow_shard.jobs_shard3 ...

What's PG do?
•Let's try a join..
EXPLAIN SELECT * FROM workflow
 JOIN jobs
 ON (workflow.shard = jobs.shard and workflow.name = workflow_name);

 QUERY PLAN

 Merge Join (cost=13235.29..41555.08 rows=1878610 width=224)
 Merge Cond: ((('shard1'::text) = ('shard1'::text)) AND (workflow_shard1.name = jobs_shard1.workflow_name))
 -> Sort (cost=6367.75..6410.79 rows=17216 width=128)
 Sort Key: ('shard1'::text), jobs_shard1.workflow_name
 -> Append (cost=100.00..4036.48 rows=17216 width=128)
 -> Foreign Scan on jobs_shard1 (cost=100.00..126.14 rows=538 width=128)
 -> Foreign Scan on jobs_shard2 (cost=100.00..126.14 rows=538 width=128)
 -> Foreign Scan on jobs_shard3 (cost=100.00..126.14 rows=538 width=128)
 -> Foreign Scan on jobs_shard4 (cost=100.00..126.14 rows=538 width=128)

 -> Materialize (cost=6867.54..6976.66 rows=21824 width=96)
 -> Sort (cost=6867.54..6922.10 rows=21824 width=96)
 Sort Key: ('shard1'::text), workflow_shard1.name
 -> Append (cost=100.00..4174.72 rows=21824 width=96)
 -> Foreign Scan on workflow_shard1 (cost=100.00..130.46 rows=682 width=96)
 -> Foreign Scan on workflow_shard2 (cost=100.00..130.46 rows=682 width=96)
 -> Foreign Scan on workflow_shard3 (cost=100.00..130.46 rows=682 width=96)

(73 rows)

Playing with views
•Looking at one shard..
EXPLAIN SELECT * FROM workflow
 JOIN jobs
 ON (workflow.shard = jobs.shard and workflow.name = workflow_name)
 WHERE workflow.shard = 'shard1';

 QUERY PLAN

 Hash Join (cost=232.86..329.41 rows=1835 width=224)
 Hash Cond: (workflow_shard1.name = jobs_shard1.workflow_name)
 -> Append (cost=100.00..130.46 rows=682 width=96)
 -> Foreign Scan on workflow_shard1 (cost=100.00..130.46 rows=682 width=96)
 -> Hash (cost=126.14..126.14 rows=538 width=128)
 -> Append (cost=100.00..126.14 rows=538 width=128)
 -> Foreign Scan on jobs_shard1 (cost=100.00..126.14 rows=538 width=128)
(7 rows)

•Much better, but means you have to remember...
•Still works through prepared queries

Verbose
•Shows the query to be sent
EXPLAIN (verbose) SELECT * FROM workflow
 JOIN jobs
 ON (workflow.shard = jobs.shard and workflow.name = workflow_name)
 WHERE workflow.shard = 'shard1';

 QUERY PLAN
--
 Hash Join (cost=232.86..329.41 rows=1835 width=224)
 Output: ('shard1'::text), workflow_shard1.name, workflow_shard1.state,
 ('shard1'::text), jobs_shard1.workflow_name, jobs_shard1.name, jobs_shard1.state
 Hash Cond: (workflow_shard1.name = jobs_shard1.workflow_name)
 -> Append (cost=100.00..130.46 rows=682 width=96)
 -> Foreign Scan on workflow_shard.workflow_shard1 (cost=100.00..130.46 rows=682 width=96)
 Output: 'shard1'::text, workflow_shard1.name, workflow_shard1.state
 Remote SQL: SELECT name, state FROM workflow.workflow
 -> Hash (cost=126.14..126.14 rows=538 width=128)
 Output: ('shard1'::text), jobs_shard1.workflow_name, jobs_shard1.name, jobs_shard1.state
 -> Append (cost=100.00..126.14 rows=538 width=128)
 -> Foreign Scan on workflow_shard.jobs_shard1 (cost=100.00..126.14 rows=538 width=128)
 Output: 'shard1'::text, jobs_shard1.workflow_name, jobs_shard1.name, jobs_shard1.state
 Remote SQL: SELECT workflow_name, name, state FROM workflow.jobs
(13 rows)

Firing a remote procedure
•Have to set it up as an INSERT trigger
•Arguments and result end up being columns
On the shards:
 CREATE TABLE fire_func (id bigint, a int, b int, result int);
 CREATE FUNCTION add_two () RETURNS trigger AS $_$
 begin new.result = new.a + new.b; return new; end; $_$
 LANGUAGE plpgsql;
 CREATE TRIGGER add_two_trig BEFORE INSERT ON fire_func FOR EACH ROW EXECUTE PROCEDURE add_two();

On the head node:
 CREATE FOREIGN TABLE fire_func_shard1 (id bigint, a int, b int, result int)
 SERVER shard1 OPTIONS (schema_name 'workflow', table_name 'fire_func');
 CREATE FOREIGN TABLE fire_func_shard2 (id bigint, a int, b int, result int)
 SERVER shard2 OPTIONS (schema_name 'workflow', table_name 'fire_func');
 ...

=# insert into fire_func_shard2 (id, a, b) values (100, 1, 2) returning id, a, b, result;
 id | a | b | result
-----+---+---+--------
 100 | 1 | 2 | 3
(1 row)

Managing foreign tables
•Scripts, ideally generalized

•Generating foreign tables
•Building views

•Use a schema migration system
•Roll-your-own
•External options (Sqitch, etc)

•Use "foreign schemas"

Improvements for FDWs
•Parallelize work

•Make Append() send all FDW queries at once
•Use a round-robin approach to pulling data
•Buffer results

•Better user management
•Credential proxying
•Automatic user maps
•Trusted inter-server connections

More idle thoughts
•Make UNION ALL views updatable
•Inheiritance for foreign tables
•Auto-discover foreign table definition
•Join push-down
•Scripting the server/user map/table creation
•Building views over the foregn tables
•How views are implemented / run by PG
•Build system to trigger actions off of a table update
•Managing workflows, external processes
•REAL PARTITIONING

Thank you!
Stephen Frost

sfrost@snowman.net
@net_snow

	Stephen Frost
	Do you read...
	What is an FDW?
	What is an FDW? (part 2)
	Basics of FDW connections
	Using postgres_fdw
	Createing User Mappings
	Creating Foreign Tables
	Remote Query Execution
	More on Query Execution
	Query costing with FDWs
	Sharding
	Dealing with 32 shards
	Sharding suggestions
	FDW Challenges
	Parallelizing
	Working through FDWs
	View Example
	What's PG do?
	Playing with views
	Verbose
	Firing a remote procedure
	Managing foreign tables
	Improvements for FDWs
	More idle thoughts

